Eno Sarris MLB starting pitching ranks for 2023, with Stuff+ powered projections and spring updat

Publish date: 2024-06-04

We’ve been working, here in this space, on improving the Pitching+ model. Your comments, your reactions, and your questions have all shaped improvements on that model.

Thanks to your help, we’ll reach a couple of milestones today. The Pitching+ model is performing at its best when it comes to predictive strength, and we’re also going to offer projections that use the model to power perhaps the most predictive pitching projections on the market.

Advertisement

In this new update to the Pitching+ model, we’ve lumped cutters in with fastballs to create three mini-models within the overall Pitching+ — you’ll notice some improvement in Stuff+ for pitchers like Graham Ashcraft, Martín Pérez and Nestor Cortes as a result of this aspect of change. We’ve also trained the model on more 2022 data, and more data means better performance. Remember, this model includes data that only Hawkeye can provide, and that was put into place in 2020. This re-training helped some sinkers perform better, so you’ll see Logan Webb, Framber Valdez and Brady Singer improve some.

Pitching+ now comes online faster and is more predictive in small samples than strikeouts minus walks, the most powerful small-sample statistic based on results.

That’s great for in-season predictive power. More important right now, and for year-to-year fantasy work, though, is taking Pitching+ and incorporating it into a projection system that marries these process statistics with some regression and also some of what actually happened on the field. This projection system, created by Jordan Rosenblum and powered by Pitching+, also gets to incorporate things like park factors and aging to improve their predictive ability. Unfortunately, that means a little drop for Nick Lodolo, but it also helps us remember there are physical realities that impact a player’s performance beyond just the quality of their process.

Here’s a look into Rosenblum’s process in making these projections:

“I first built a traditional pitching projection model following the well-known Marcel approach to project the various pitching components (K%, BB%, BABIP, and barrels and home runs). This approach captures the last three years of major league performance, with more recent years weighted more heavily, and adds in the appropriate amount of regression to the mean for each component (rather than regressing each component the same amount, as Marcel does for simplicity). I park-adjusted the statistics using park factors from Baseball Savant. I then added in aging effects and major league equivalencies to capture minor league performance developed in my previous research.

The best traditional model of ERA I could build in terms of predictive accuracy was an xFIP-style model that captures projected K%, BB%, FB percentage, and barrel/FB rather than HR/FB. Whereas xFIP assumes every pitcher allows a league average number of home runs per fly ball, my model captures a pitcher’s regressed barrel per fly ball rate. Barrel/FB is a much stickier metric than HR/FB, requiring only about a third as much regression to the mean, so it is less beneficial to assume every pitcher allows the same league average rate. My xFIP-with-barrels model outperformed PCRA slightly in terms of accuracy of predicting ERA, and both my model and PCRA stood apart from projection models based on other ERA estimators, SIERA, xFIP, FIP, ERA, and kwERA.

With the traditional pitching projection model built, I then added in the Pitching+ metrics. Stuff+ is extremely sticky, almost as sticky as fastball velocity, so I just focused on the most recent year, whereas I considered the last three years of performance (weighted by recency) for Location+ and Pitching+ like I did for the traditional components. I tested out the three Pitching+ metrics in projecting each of the important component metrics and I kept them in the final projection model of a particular component if they helped maximize predictive accuracy. For instance, adding Stuff+ into my traditional model of BABIP led to a significant boost in predictive power: adding Stuff+ improved the correlation between the BABIP forecast and the observed outcome, and reduced the mean absolute error and root mean square error by about 3%.

The end result is a novel pitching forecast that accounts for both traditional results-based pitching components and the powerful suite of pitching+ metrics that capture the physical characteristics, locations, and counts of each pitch.”

That’s pretty cool. If you want the TL;DR version: these projections, using Pitching+ under the hood, are more predictive than models using other available ERA estimators. It beat other pitching projections on the market, too, but because it’s such a baby, and we have only three years of data, we might have to wait another year or two to be sure of those results.

Advertisement

The most controversial part might be the improvement in projecting batting average on balls in play. Baseball research has long held to the idea that pitchers don’t exert much control over the ball in play, and that premise powered great advancements like FIP (Fielding Independent Pitching) and FanGraphs WAR (which is built on FIP). It’s part of why the strikeout rate has surged across baseball. But our work shows that using Stuff+ and Location+ improves our ability to project a pitcher’s BABIP, and that inherently suggests pitchers do have some control over a ball in play, and that this control has something to do with the shapes and velocities of their pitches as well as their ability to put the ball in the right locations. That echoes some of the work that Alex Chamberlain has been pioneering over at FanGraphs, as well.

The end result is that we can hopefully provide the best pitching rankings on the internet, now with Pitching+ projected ERA (ppERA) and strikeout rate (ppK%), projected Stuff+, Location+, and Pitching+, as well as Jeff Zimmerman’s pitching injury percentiles, and some hand-adjusted innings projections that began with the estimations provided by FanGraphs’ depth charts. The full projections, as well as new model results, are here on the Google doc for the deep divers. If you’re looking at a pitcher who is going to change roles on that sheet, you can see the projected innings pitched per appearance as one of the columns — a pitcher going from one inning to five innings per appearance would expect their Stuff+ to go down five and a half points, and their ERA to change according.

Good luck drafting!

(These rankings were updated March 25 to reflect the newest injury news, as well as some Stuff+ information coming in from Spring Training. Spring Stuff+ is in the google doc.)

Eno

  

Player

  

IP

  

ppERA

  

ppK%

  

ppStuff+

  

ppLocation+

  

ppPitching+

  

Injury Pct

  

NFC ADP

  

League

  

Team

  

spring Stuff

  

1

196

2.34

32.90%

126

103

109

5.6

15

NL

MIL

#N/A

2

199

2.65

34.30%

129

103

111

70.3

14

AL

NYY

132.1

3

140

1.76

39.00%

137

106

115

92.9

26

AL

TEX

#N/A

4

151

2.43

35.60%

134

102

111

64.3

22

NL

ATL

137.4

5

171

2.9

32.90%

125

98

106

70.3

7

AL

LAA

#N/A

6

216

2.87

25.80%

120

105

107

4.2

30

NL

MIA

118.6

7

181

2.89

29.80%

112

103

107

50.8

36

AL

TBR

122.5

8

182

2.97

29.70%

113

107

109

21.9

33

NL

MIL

#N/A

9

175

2.86

28.90%

118

105

108

97.5

33

NL

NYM

112.3

10

175

3.2

29.70%

106

103

105

54.7

37

NL

NYM

102.3

11

202

3.18

28.30%

107

108

108

13.4

30

NL

PHI

99.6

12

187

3.18

31.60%

124

98

106

3.1

51

AL

CHW

#N/A

13

194

3.12

25.70%

102

103

102

26.1

53

AL

SEA

#N/A

14

179

3.19

28.10%

110

105

108

39.5

51

AL

TOR

128.8

15

181

3.17

26.90%

111

106

109

94.3

51

NL

PHI

106.2

16

175

3.21

32.10%

116

99

104

36.3

49

AL

HOU

92.3

17

183

3.33

26.40%

107

104

106

30

70

NL

ARI

105.4

18

190

3.48

25.70%

110

107

109

0.3

56

NL

LAD

#N/A

19

185

3.31

27.30%

113

102

104

90.4

70

NL

SDP

#N/A

20

204

3.49

27.00%

98

102

103

8.8

50

AL

CLE

#N/A

21

156

3.18

31.20%

119

98

104

74.5

106

NL

SDP

#N/A

22

154

2.89

32.60%

114

103

106

89.7

75

AL

NYY

#N/A

23

195

3.44

25.00%

110

97

99

8.1

74

AL

HOU

135.3

24

146

3.44

27.60%

108

102

104

99.6

102

AL

NYY

111.9

25

186

3.33

23.30%

105

103

104

11.3

113

NL

SFG

104

26

186

3.62

22.70%

96

101

102

12

64

NL

ATL

89.6

27

181

3.57

24.50%

102

100

103

7.4

109

AL

SEA

#N/A

28

170

3.42

23.90%

99

106

104

44.8

95

AL

SEA

#N/A

29

160

3.28

24.60%

106

104

107

52.6

143

AL

TBR

119.9

30

199

3.63

24.60%

100

99

100

3.8

66

AL

TOR

86.8

31

190

3.58

27.60%

95

101

100

6.3

85

AL

SEA

#N/A

32

165

3.35

25.60%

103

101

103

15.5

89

NL

SDP

#N/A

33

144

3.36

27.10%

106

103

106

89.3

114

NL

LAD

#N/A

34

156

3.71

31.30%

128

100

106

78

100

NL

CIN

116.2

35

157

3.47

27.00%

107

102

103

24.3

127

AL

NYY

103

36

156

3.55

26.20%

93

104

104

68.9

138

AL

TBR

99.5

37

140

3.73

25.50%

103

102

101

99.2

115

AL

BOS

96.8

38

130

3.61

26.80%

104

100

104

91.5

149

NL

LAD

#N/A

39

156

3.72

#N/A

#N/A

#N/A

#N/A

#N/A

173

NL

NYM

110.9

40

149

3.75

26.50%

102

100

103

92.2

151

NL

ATL

104.5

41

174

3.76

25.60%

103

100

100

11.6

154

AL

HOU

105.8

42

175

3.87

25.70%

98

103

100

23.3

131

AL

MIN

100.1

43

175

3.78

24.20%

99

103

101

86.5

125

AL

CHW

107.4

44

191

3.8

27.10%

109

101

103

5.3

86

AL

CLE

#N/A

45

172

3.47

22.50%

100

103

100

61.1

164

NL

STL

96.6

46

181

3.91

22.70%

103

98

99

14.4

153

NL

ATL

#N/A

47

125

3.05

28.90%

114

100

102

#N/A

182

AL

BAL

119.6

48

125

2.19

37.10%

139

102

110

97.8

157

AL

TBR

#N/A

49

145

3.39

25.20%

108

106

109

94.3

225

AL

TEX

#N/A

50

128

3.41

29.10%

107

99

103

74.9

139

NL

MIL

#N/A

51

161

3.77

23.30%

96

104

102

66.4

159

NL

MIA

103.6

52

172

3.65

24.70%

100

101

100

84.8

198

AL

TEX

97.3

53

155

3.54

22.70%

94

102

101

94.3

204

NL

SFG

#N/A

54

145

3.62

24.70%

100

104

104

27.9

240

AL

MIN

96.4

55

170

3.91

22.70%

100

105

105

87.6

237

NL

CHC

#N/A

56

169

3.7

24.70%

101

101

102

31.8

233

NL

MIA

98.4

57

176

3.87

22.10%

98

102

101

79.8

162

AL

TOR

84.4

58

137

3.3

27.20%

112

100

100

53.3

198

AL

HOU

103.3

59

135

3.6

25.90%

113

100

104

#N/A

274

AL

NYY

111.1

60

155

4.54

24.90%

97

97

97

33.2

159

AL

LAA

#N/A

61

159

3.64

24.10%

108

98

101

61.4

297

AL

BAL

115.3

62

141

3.84

25.00%

103

97

97

62.8

140

NL

MIA

123.6

63

179

3.7

22.80%

98

101

99

43.8

183

AL

KCR

115.6

64

135

3.41

24.90%

104

100

102

78.7

201

AL

MIN

106.3

65

144

3.49

22.70%

98

107

102

75.9

260

AL

TBR

105.5

66

176

4

22.90%

101

103

103

1

239

AL

TOR

97.3

67

163

4.13

23.80%

95

98

98

17.6

193

AL

LAA

#N/A

68

181

4.01

21.10%

103

100

98

30.3

314

NL

PIT

110.8

69

130

3.87

26.90%

97

102

102

95.7

208

AL

TEX

90.1

70

171

3.71

21.90%

104

102

101

66.7

266

NL

CHC

#N/A

71

131

3.57

25.80%

103

104

106

59.7

292

AL

BOS

#N/A

72

160

4.15

28.00%

105

97

99

55.1

131

NL

CIN

84.6

73

140

4.12

#N/A

#N/A

#N/A

#N/A

#N/A

313

AL

MIN

106.6

74

130

3.89

23.20%

102

102

101

48.4

308

AL

CLE

#N/A

75

169

3.94

18.10%

91

106

101

81.2

225

NL

STL

89.4

76

142

3.96

21.90%

98

105

100

57.5

293

NL

SFG

#N/A

77

135

3.87

26.20%

104

95

95

71

213

NL

MIA

115.1

78

126

3.77

22.70%

92

101

99

85.5

349

NL

SFG

91.5

79

125

3.58

26.20%

106

98

102

95.4

330

AL

HOU

#N/A

80

196

4.07

20.70%

96

104

101

9.5

239

NL

ARI

100.8

81

178

4.01

25.10%

92

101

102

1.4

135

AL

CHW

#N/A

82

141

3.89

21.40%

81

103

98

52.2

302

AL

DET

84

83

141

4.02

21.30%

101

104

104

28.6

268

NL

CHC

#N/A

84

154

4.16

22.50%

89

102

99

72

282

NL

SFG

#N/A

85

155

4.01

22.50%

106

105

106

54.4

278

AL

HOU

#N/A

86

140

3.74

23.00%

98

99

99

80.9

224

NL

STL

98.3

87

165

4.08

22.40%

115

101

105

56.5

451

NL

ARI

104.5

88

145

3.98

22.30%

92

104

102

97.1

271

NL

NYM

86.2

89

142

4

23.70%

106

99

100

49.4

289

NL

PIT

99.6

90

155

3.82

23.50%

97

98

98

46.6

298

NL

CHC

#N/A

91

125

3.92

#N/A

#N/A

#N/A

#N/A

#N/A

416

AL

DET

100.4

92

138

3.95

26.60%

113

98

103

90.1

259

AL

CHW

#N/A

93

148

4.25

21.00%

102

103

103

80.5

365

AL

BOS

91.5

94

143

4.09

24.20%

102

98

101

74.2

225

NL

LAD

#N/A

95

134

4.12

21.50%

95

101

101

42.7

388

NL

SDP

#N/A

96

140

4.21

20.20%

109

100

103

73.1

446

NL

CIN

#N/A

97

120

3.53

22.90%

100

103

102

91.8

311

NL

STL

93.2

98

184

4.49

18.70%

93

106

101

48

256

AL

LAA

97.5

99

173

4.3

20.00%

87

101

97

9.1

349

NL

PHI

#N/A

100

121

4.05

22.00%

102

101

101

69.9

487

AL

NYY

110.3

101

171

4.19

24.80%

107

99

102

0.3

404

AL

BOS

115.1

102

149

4.29

22.00%

105

101

102

95.7

298

NL

PHI

93.1

103

135

3.73

25.30%

101

99

100

38.8

440

AL

OAK

#N/A

104

147

4.08

AL

OAK

104.1

105

135

4.36

#N/A

#N/A

#N/A

#N/A

#N/A

572

AL

OAK

94.3

106

157

4.78

18.50%

88

104

101

96.4

310

NL

LAD

#N/A

107

118

4.45

21.60%

100

98

98

67.4

400

NL

WSN

92.5

108

111

3.7

22.70%

106

104

108

78.4

595

AL

BAL

101.1

109

81

4.05

21.40%

115

97

102

63.6

475

NL

PIT

128.4

110

111

4.15

22.70%

91

104

101

31.4

319

AL

MIN

93.9

111

88

4

23.80%

92

96

94

50.5

475

NL

NYM

93

112

94

3.67

25.60%

104

101

102

73.4

473

NL

NYM

91.6

113

93

3.6

26.80%

102

98

100

75.2

252

NL

MIL

#N/A

114

64

3.33

29.30%

112

101

105

#N/A

543

AL

BAL

108.1

115

69

3.76

23.80%

91

102

101

48.7

484

AL

DET

#N/A

116

80

3.72

25.70%

106

97

100

#N/A

442

AL

BOS

#N/A

117

101

3.83

21.30%

0

0

0

#N/A

378

NL

ATL

#N/A

118

148

3.92

21.60%

94

101

98

#N/A

524

AL

DET

90.9

119

156

3.99

17.80%

88

101

97

83

631

AL

OAK

80.6

120

182

3.97

19.40%

94

101

98

4.5

496

AL

BAL

#N/A

121

159

4.08

21.60%

91

101

98

47.3

564

NL

PIT

95.5

122

113

4.12

22.80%

96

99

98

56.8

338

AL

BOS

97.3

123

154

4.35

23.10%

94

100

97

45.9

277

NL

MIL

#N/A

124

85

4.13

22.60%

102

101

105

42.4

680

AL

TBR

108.4

125

107

4.31

20.90%

94

100

97

25.4

402

NL

MIA

92.5

126

140

4.1

19.90%

95

100

98

93.2

526

AL

DET

99.2

127

115

4.15

25.50%

107

97

99

25.7

618

AL

TOR

97.9

128

181

4.68

15.60%

76

104

97

0

475

AL

OAK

#N/A

129

75

4.24

20.90%

93

101

97

AL

MIN

#N/A

130

171

4.25

19.00%

83

102

96

85.1

323

AL

TEX

#N/A

131

101

4.29

19.00%

98

98

98

20.8

744

AL

KCR

102.2

132

124

4.13

18.70%

96

101

98

59.3

493

AL

DET

93.2

133

169

4.49

18.60%

90

100

96

3.5

341

AL

CLE

89.8

134

172

4.56

23.70%

98

98

98

13.7

428

NL

WSN

67.6

135

161

4.21

19.90%

95

100

99

20.4

563

AL

BAL

96.1

136

75

4.03

24.40%

92

98

96

#N/A

578

NL

LAD

#N/A

137

131

4.32

23.50%

0

0

0

99.5

534

AL

BOS

101.5

138

71

4.34

23.60%

105

101

104

60.4

728

AL

BOS

#N/A

139

62

4.24

20.50%

92

102

101

59

713

AL

BAL

90.8

140

95

4.15

23.40%

104

98

99

68.1

608

NL

CHC

#N/A

141

55

3.81

25.30%

103

102

105

60

303

AL

NYY

#N/A

142

83

3.42

26.40%

119

101

104

#N/A

647

NL

SDP

#N/A

143

67

4.21

21.00%

108

86

101

98.5

685

AL

TBR

90.8

144

60

3.83

27.90%

102

99

99

76.3

462

AL

CLE

#N/A

145

135

3.59

20.20%

106

104

102

86.2

357

NL

STL

76.9

146

75

4.14

16.50%

92

101

97

#N/A

751

NL

STL

92.6

147

48

3.91

27.00%

0

0

0

#N/A

548

NL

SFG

#N/A

148

121

4.28

20.40%

92

104

100

7.7

662

NL

WSN

86.9

149

37

4.23

22.90%

100

99

101

#N/A

412

NL

ARI

105

150

134

4.41

15.10%

88

103

99

81.6

673

AL

KCR

104.4

151

110

4.02

21.80%

91

97

96

40.2

539

AL

OAK

88.7

152

194

4.42

20.20%

95

99

98

5.6

479

NL

COL

90

153

128

4.12

20.60%

96

102

101

85.8

561

NL

SFG

#N/A

154

106

4.29

20.90%

100

100

101

90.8

631

NL

PIT

87.1

155

126

4.49

20.80%

92

105

99

93.9

478

NL

CHC

85.4

156

62

4.2

20.20%

99

102

101

47.7

374

NL

ARI

100.2

157

131

4.59

15.90%

85

102

97

2.8

682

AL

KCR

78.4

158

166

4.67

17.50%

89

100

98

22.9

611

AL

KCR

#N/A

159

90

4.02

21.40%

87

98

95

33.2

609

AL

OAK

88.2

160

58

4.7

25.20%

102

93

96

37.8

606

NL

LAD

#N/A

161

NL

ATL

162

142

4.47

19.10%

87

99

96

49.1

672

AL

OAK

#N/A

163

153

4.18

20.90%

84

101

97

34.9

361

NL

NYM

90.1

164

75

4.55

17.90%

87

98

94

34.2

670

NL

STL

#N/A

165

98

4.66

21.20%

83

104

98

18

494

NL

PHI

81.8

166

111

4.31

23.00%

102

100

101

84.4

730

NL

PIT

#N/A

167

73

4.11

21.30%

101

102

102

58.3

676

NL

SFG

#N/A

168

38

4.45

19.10%

106

95

98

29.3

750

AL

KCR

117.9

169

176

4.76

15.50%

81

103

96

2.4

555

AL

SEA

87.9

170

55

4.32

21.70%

97

95

95

24.7

718

AL

TEX

102.2

171

38

4.17

20.80%

96

102

101

36.3

736

AL

MIN

#N/A

172

161

4.53

20.90%

90

102

100

10.2

419

AL

LAA

#N/A

173

#N/A

#N/A

#N/A

#N/A

#N/A

#N/A

#N/A

#N/A

AL

TOR

#N/A

174

159

5.01

15.80%

74

105

97

10.9

618

NL

CHC

#N/A

175

156

4.69

16.80%

81

103

97

96.8

512

NL

MIA

76.9

176

44

3.63

23.00%

104

103

107

82.3

639

AL

BAL

#N/A

177

101

4.23

18.30%

97

102

99

83.7

617

NL

MIL

#N/A

178

20

4.26

20.70%

92

96

95

36.3

746

NL

CHC

88.7

179

122

4.54

20.70%

91

104

101

87.2

461

NL

SDP

#N/A

180

155

4.63

18.90%

91

102

99

17.3

582

AL

CLE

#N/A

181

24

4.4

20.80%

102

93

93

#N/A

751

AL

KCR

#N/A

182

43

4.53

17.90%

85

100

98

#N/A

748

NL

STL

87.3

183

76

4.38

20.00%

95

100

100

35.3

745

AL

TOR

#N/A

184

88

4.5

20.10%

98

97

96

23.3

668

NL

PIT

98.7

185

105

4.98

20.00%

98

92

100

87.6

433

AL

CHW

#N/A

186

61

4.45

17.10%

88

104

99

10.2

#N/A

AL

DET

92.5

187

22

4.91

18.30%

89

96

95

33.9

#N/A

NL

SDP

103.1

188

30

4.44

21.30%

90

100

97

57.9

749

AL

TEX

#N/A

189

49

5.02

19.70%

0

0

0

#N/A

750

AL

NYY

114.9

190

142

4.91

16.90%

87

100

95

44.5

705

NL

ARI

#N/A

191

85

4.46

21.40%

99

97

96

98.2

679

NL

WSN

#N/A

192

69

4.62

19.50%

79

98

93

4.9

726

AL

TEX

#N/A

193

41

4.64

17.70%

86

100

96

15.9

750

NL

PIT

85.3

194

28

4.65

19.50%

91

98

96

28.2

751

AL

TEX

#N/A

195

97

4.55

14.30%

82

98

93

80.2

745

NL

STL

91

196

106

4.53

17.30%

91

100

97

41.3

743

NL

MIL

#N/A

197

100

4.36

18.10%

93

100

96

1.7

688

AL

SEA

#N/A

198

46

4.12

22.30%

0

0

0

#N/A

749

NL

NYM

#N/A

199

55

4.72

20.00%

99

96

95

64.6

750

NL

ARI

113.4

200

58

4.35

18.30%

96

101

101

67.1

746

AL

DET

115.8

(Top photo of Corbin Burnes: Benny Sieu / USA Today)

ncG1vNJzZmismJqutbTLnquim16YvK57k2tnb2hgZnxzfJFsZmlrX2eEcL%2FTmqmtoZ6cerG105yfoqaXYr%2BiusqsZKyZoqe2tHmRaWlsZw%3D%3D